Magnetic bags in hyperbolic space
نویسندگان
چکیده
منابع مشابه
Magnetic bags in hyperbolic space
A magnetic bag is an abelian approximation to a large number of coincident SU(2) BPS monopoles. In this paper we consider magnetic bags in hyperbolic space and derive their Nahm transform from the large charge limit of the discrete Nahm equation for hyperbolic monopoles. An advantage of studying magnetic bags in hyperbolic space, rather than Euclidean space, is that a range of exact charge N hy...
متن کاملMulti-monopoles and Magnetic Bags
By analogy with the multi-vortices, we show that also multi-monopoles become magnetic bags in the large n limit. This simplification allows us to compute the spectrum and the profile functions by requiring the minimization of the energy of the bag. We consider in detail the case of the magnetic bag in the limit of vanishing potential and we find that it saturates the Bogomol’nyi bound and there...
متن کاملHyperbolic Space
Radial lines, suitably parameterized, are geodesics, but notice that the distance from the origin to the (Euclidean) unit sphere is infinite. This model makes it intuitively clear that the boundary at infinity of hyperbolic space is Sn−1. Hyperbolic space together with its boundary at infinity has the topology of a closed ball, and isometries of hyperbolic space extend uniquely to a homeomorphi...
متن کاملUniversal Approximator Property of the Space of Hyperbolic Tangent Functions
In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2015
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.92.025052